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SUMMARY

A numerical study was made of downrange glide and of banking and
looping maneuvers to investigate the effect of lift-drag ratio, bank
angle, and ballistic coefficient upon downrange recovery and upon return
toward the launch site of a winged first-stage rocket booster. The
ranges of the variables considered were lift-drag ratios from 0 to 2.0,
ballistic coefficients from 0.10 to 0.50 square foot per slug, and bank
angles from 10° to 90°. For any combination of parameters considered,
it was found that the winged booster could not be returned to the launch
site by unpowered flight alone. When all three maneuvers were combined
and for lift-drag ratios up to 6.0 (2.0 while supersonic, 6.0 while
subsonic), the maximum maneuver boundary was found to enclose a region
extending from 124 to 490 miles downrange from the launch site and up
to approximately 125 miles laterally from the launch flight path.

These distances are a fTirst-order approximation of the maneuver boundary
since the method of analysis did not permit modulating the 1ift.

INTRODUCTION

The current trend toward larger and more powerful rocket boosters
has resulted in very large unit costs. A firing frequency may eventually
be reached which will require booster recovery; it is therefore appro-
priate to consider the problems associated with various recdovery
techniques.

One possible technique for recovery of a first-stage booster
involves the use of wings. Winged recovery 1s of interest because 1t
offers the potential of either returning to the launch site or gliding
to some alternate site.

The objective of the analysis reported herein was to explore the
effectiveness of wings to provide a gliding and maneuvering capability
as a means of booster recovery. To satisfy this objective, three types
of maneuvers were studied: a downrange glide, a banking glide, and a
loop glide. The stagnatlon-point convective heating rates, decelerations,
and distance from the launch site accompanying these maneuvers are pre-
sented for several values of lift-drag ratio and ballistic coefficient.



The problem of atmosphere entry with orbital velocity has been the subject
of considerable study (e.g., see refs. 1 and 2). A spent first-stage
rocket booster, however, enters the atmosphere at a much lower velocity
and little information has been published on this type of entry.

The rocket vehicle selected for the current investigation was
capable of placing 27,000 pounds of useful payload into an orbit 300
nautical miles above the earth's surface. The reductions of the orbital
payload capability of a similar booster which result from inert weight
added to the first stage, to provide for wings and structural modifications
or for other recovery gear, are considered in reference 3.

NOTATION
A reference area, £t2
Cp drag coefficlent, é%
Cp,  1ift coefficient, %‘A-
D drag, 1b
g acceleration of gravity at sea level, ft/sec2
h altitude above earth's surface, ft
ISp specific impulse, sec
L 1ift, 1b
m mass, slugs
q dynamic pressure, % V.2, 1b/ft?
q leminar convective heating rate at stagnation point, Btu/ftZ/sec
5 range traveled over earth's surface, ft
t time, sec
v absolute velocity, ft/sgp

velocity relative to a rotating atmosphere, ft/ sec

< dd

longitudinal deceleration, ft/sec®
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vy normal deceleration, ft/sec2

VR resultant deceleration, g

B8 bank angle, deg

7 flight-path angle relative to a rotating atmosphere, measured
from the local horizontal, positive up, deg

P latitude, measured from the equator, positive northward, deg

0 atmospheric density, slugs/ft3

METHOD OF ANALYSIS

Trajectories

The study of downrange and looping glide maneuvers was based on a
two-dimensional analysls while the banking glide maneuver required a
three-dimensional analysis. The investigation was conducted on an
IBM 704 digital computer, which integrated the equations of motion
found in appendix A.

Reference trajectory.- A booster reference trajectory was obtained
to prescribe the initlal conditions for the entry maneuvers investigated.
This reference trajectory was obtalned from the launch conditions for
placing 27,000 pounds of useful payload into a 300 nautical mile orbit:

1. A 20-second vertical rise time from latitude 28.148o north

2. An Impulsive tilt in a due east directlon at the end of
the vertical rise

3. A gravity turn for the remailning portion of the trajectory

4. No drag from launch, through apogee, to the point of
re-entry into the sensible atmosphere

5. The sensible atmosphere was assumed to extend to an
altitude of approximately 60 statute miles.

The basis for the assumption of zero drag from launch to the point
of re-entry was that during the ascent portion of the trajectory the
thrust force 1s much greater than the drag force, while at the higher
altitudes (after booster burnout) the gravitational force is dominant
in determining the motion. Calculations further showed that the assump-
tion of zero drag from launch to atmosphere re-entry resulted in about a
L -percent difference in the initial entry conditions obtained with the
inclusion of drag.



Re-entry trajectories.- The conditions at booster re-entry into the

sensible atmosphere were used as the initial conditions for the re-entry

maneuvers studied. The conditlons were obtained from the reference
trajectory at the beginning of the sensible atmosphere. The basic
assumptions made during this portion of the trajectoriles were:

1. 'The booster was heading due east at latitude 08.48°
north upon entry into the sensible atmosphere.

2. CDA/m, 1/D, and B were constant through a given
trajectory.

Parameters and Initial Conditions

Downrange glide.- The downrange glide maneuver was investigated
for values of L/D from O to 2.0 and for values of CDA/m from 0.10
to 0.50 ftg/slug. The flight parameters of the booster at initiation
of the downrange glide maneuver are given in table I.

Banking glide.- The banking glide maneuver was investigated for
values of L/D from 0.5 to 2.0, for a value of GDA/m = 0.50 ft2/slug,
and for values of B from 10° to 90°. The initial conditions for this
maneuver are given in table I.

Looping glide.- The looping glide maneuver was investigated for
values of A/m from 0.10 to 0.50 ft2/slug and for values of L/D
from 2.0 to 6.0. For thils maneuver the parametric variation of CDA/m
was initiated at the beginning of the sensible atmosphere. A 1lift-—drag
ratio of 2.0 was applied at the conditions listed in table I in order
to initiate the pullup. At the top of the loop (a flight-path angle
of 180°) the booster was assumed to be instantaneously rolled to an
upright position. At this point L/D was varied parametrically to
obtain the return distance.

ROCKET VEHICLE CHARACTERISTICS

The characteristics of the rocket vehicle used throughout the
analysis are presented in table IT. The weights presented are for the
individual stages and do not include the upper stage weights.

H =\



RESULTS AND DISCUSSION

Typical time histories of ballistic and lifting entry trajectories
are presented in figures 1(a) and 1(b), respectively. From figure 1(b)
it can be seen that the booster skippedl during the descent, but at no
time did 1t skip out of the sensible atmosphere. For all of the varia-
tions in L/D and CDA/m investigated, the maximum resultant decelera-
tion during the downrange glide maneuver occurred at the onset of the
first skip, except for the L/D = 0 trajectory.

Presented in figure 2 are parameter limitations for the downrange
glide maneuver for several values of resultant deceleration and convective
heating rates, and for skipping. Also shown in the figure is a region
enclosing the range of parameters examined and reported herein. The
parametric variations were extended to higher values of L/D and CDA/m
in order to present a more complete picture of the nature of the range
considered as restricted by heating rates, decelerations, and skipping.
Shown in the figure are representative skilp boundaries, of which there
are an infinite number, depending upon the selected density. For any
combined value of L/D and CDA/m lying above the selected curve, the
vehicle will skip at that altitude or above. For no skipping L/D
and CDA/m must be changed continuously during the descent in order
that the combined values place the vehicle below the skip boundary for
that density and altitude.

Shown in figure 3 is an altitude-velocity diagram for several
maneuvers. The upper curve represents the condition wherein the weight
1s balanced by the sum of aerodynamic 1lift plus centrifugal 1ift. The
representative heating curve shown is for a stagnation=-point convective
heating rate of 17 Btu/ftz/sec based on a 1-foot nose radius.

A typical bank trajectory is presented in figure 4. Because of the
lateral displacement during the bank maneuver, a turn of as much as 190°
was required before the booster had reached a heading in the direction
of the launch site. Also shown on the figure 1s the booster altitude as
a function of distance from the launch site for the L/D = 2.0 turn
maneuver. For all 1ift-drag ratios Investigated the bank trajectories
were terminated at the completion of the required turn or at an altitude
of 45,000 feet, whichever occurred first. The altitude termination
condition was due to a limitation of the computing program.

Presented in figure 5 are typical lcop maneuvers for several values
of CDA/m and for a value of L/D =2.0. From this figure it can be
seen that a value of CDA/m greater than 0.40 ftz/slug was required to
successfully complete the loop maneuver at an L/D = 2.0.

1As used herein, a skip is the time rate of change of altitude (dh/dt).
When dh/dt went from a negative to a positive value, the booster was
consldered to have skipped.



The total accessible ground area for the booster recovery, using a
combination of all three of the glide maneuvers, is presented in figure 6.
The outer boundary was obtained by following an L/D = 2.0 trajectory
until the booster had decelerated to sonic velocity, and then increasing
the L/D to 6.0. From figure 6 it can be seen that increasing the sub-
sonic L/D from 2.0 to 6.0 made the point of closest return about
30 percent nearer to the launch site, while the maximum lateral range Wwas
extended by as much as 50 percent. Since the booster had reached subsonic
velocity before impact it was felt that lift-drag ratios higher than 2.0
would be possible. The accessible ground area shown in figure 6 is to
be regarded as approximate in that the values of L/D, CDA/m, and bank
angle were constant. Modulation of 1ift will permit increasingly
higher ¢Cp, as speed decreases and will possibly extend the boundaries
outward. For the range of parameters considered, it appears that
regardless of the type of power-off glide maneuver employed, the booster
cannot be returned to the launch site.

Figures 7 through 12, inclusive, present the distance from the
launch site, decelerations, stagnatlon-point convective heating rates,
and other pertinent detalls for the three maneuvers investigated. The
details of these figures are discussed 1n appendix B.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., Jan. 8, 1962
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APPENDIX A
EQUATTIONS OF MOTION

The equations of motion used for the present analysis are presented.
The basic assumptions made and information pertinent to the computing
programs are glven for each set of the equations of motion.

TWO-DIMENSIONAL EQUATIONS OF MOTION

Sketch (a) shows the geometry used in describing the motion of the
vehicle. The basic agssumptions made in determining the equations of
motion are:

1. The earth and atmosphere are radlally symmetric.

2. The earth is spherically homogeneous.

3. The earth and atmosphere rotate as one body.

Other information pertinent to this computer program 1s:

1. Lift-drag ratio and GDA/m were required to be constants.

2. A routine was svallable for a step change in L/D once during
the trajectory.

3. A flight-path angle of #90° could not be used since the computer
was required to evaluate the tangent of the flight-path angle.

Earth fixed horizontal

Iocal horizontal

Arrows denote

a positive direction

Sketch (a)



Equations (Al) to (A4) are dynamic and kinematic relations which
apply to the motion of a particle in a plane under the influence of
thrust, drag, 1ift, and gravitational forces.

mvy = T sin(a + 74 - 7) - % oVa CpA sin(y, - 7) +'% oVa” % Cph cos(7a - 7)
mvZ _
* (R +h mg> cos 7 -
mV = T cos(a + Yo - V) - % Vs CpA cos(7, - 7) - %’pvaz % Oph sin(7, - 7)
- mg sin ¥ (A2)
h =V sin 7 (43)
=3 5 = V cos 7 - Rue (ak)

A dot over a quantity denotes the time rate of change.

The following relations were also required for the program:

Vo2 = V2 - 2VV,, cos 7 + A (A5)
VZ = Va® + VgV, cos 75 + Ve (A6)

@ =N+ € -7 (AT)

tan 7 = o Zissiz Z?Vub (A8)
tan 7, = V sin ¥ (A9)

V cos 7 - Vme

(A10)

] [

The easterly velocity component due to the earth's rotation is given
approximately by -

Vi, = (R +h)ug cos 1 (A11)

H o\
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where

i inclination of the orbital plane to the eguatorial plane, deg
R earth's radius, ft

T thrust, 1b

V@b velocity component due to the earth's rotation, ft/sec

a thrust vectoring angle, deg

4 absolute flight-path angle, deg

€ range angle, deg

1 angle between thrust vector and earth fixed horizontal, deg
We earth's angular velocity, radians/sec

Other symbols used in the equations have been previously defined in
the section entitled "Notation."

THREE-DIMENSTIONAL EQUATIONS OF MOTION

Sketches (b) through (e) show the geometry used in obtaining the
equations of motion for the three-dimensional case. ©Since this program
was used only for re-entry glide maneuvers, the thrust term has been
omitted.

The basic assumptlons made were:

1. The earth and atmosphere rotate as one body.

2. The earth is oblate.

3. The gravitational potential retained only the terms to the
order J (ref. U4).

Other information pertinent to this computing program is:
1. A 1958 ARDC atmosphere, modified by satellite data (ref. 5).

2. L1/D, GDA/m and bank angle are constants.
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D
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L LeosB
B
Isinp

Head on view of V

Sketch (4d)

The equations of motion are

m{i
T

n[¥ - r¢®

1 a 2 2 =
m {———r TR [r2cos29(6 + we)]}

Space reference
plane through poles

é% (r29) + r cos @ sin ¢(8 + wé)z}

V.

Teosp( 6+ )
rcosy

G+wet

5

4R
\ 3¢

Equator

H U e

Sketch (c) )

North

Meridian through
ex ué (increasing @)

mass point

Lcospsiny Veosy

+Deosy

PEp
East
(increasing 6)

Ising

Great circle plane through V
Iooking toward earth's center

Sketch (e)

- v cos2p(6 + we)?] = Fp (A12)
= Fop (A13)
= Fg (ALk)
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The following relations were also used in the analysis:

V = (#2 + r292 + r292cos2p) Y 2 (A15)
F, =L cos B cos 7 - D sin 7 - mg, (A16)
Fg = L sin B cos ¥ - (L cos B sin 7 + D cos 7)sin ¥ (ALT)
Fp =-L sin Bsin ¥ - (L cos B sin 7y + D cos ¥)cos ¥ - mgg (A18)
R\
; U= - % |:1 - -‘3I <?> (3 sin®¢ - 1)} (A19)
=9U - , & J Re 2( 2 ) (A20)
gr‘g‘;—"’rz 1l - - BSin(P-l AD
2
. 13U, (R
gcp_r5cp"+;'§J(r>Sin2cP (A21)
h =1 -1 (A22)
AN
oo ] Az
ro Re[cos o) Ry sin=p (A23)
sin 7 = %- (A2k)

e () e ) e (B29)

where
Er radial component of earth's gravity, ft/sec2
8o latitude component of earth's gravity, ft/sec2

J coefficient of the second harmonic in the gravitational potential

function
r radius vector, measured from the center of the earth, ft
- T radius of the earth at latitude @, ft

Re equatorial radius of the earth, ft

polar radius of the earth, ft
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U gravitational potential function, ft2/sec2

& earth referenced longitude, measured from the prime meridian,
rositive eastward, deg

s azimuth angle of the earth referenced velocity, measured from
local north, deg

u universal gravitational constant times mass of the earth, fts/sec2
Other symbols used are defined either in the section entitled

"Notation” or in the presentation of the two-dimensional equations of
motion.
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APPENDIX B

GLIDE MANEUVER DETAILS
DOWNRANGE GLIDE

Presented in figures 7(a) to 7(d) are the maximum decelerations,
distance from the launch site, heating rates, and dynamic pressure,
respectively, for the downrange glide maneuver. The apparent paradox
of increasing range with increasing CDA/m for & constant L/D (except
for L/D = 0), as indicated in figure 7(b), arises from the booster
moving nearer to the skip boundaries and then exceeding them. The tend-
ency to skip resulted from an increase in 1ift due to an increase in
CDA/m, in order to maintain a constant value of L/D.

BANKING GLIDE

Shown 1in figures 8 through 10 are details of the banking glide
maneuver. The maneuver boundaries shown 1n figure 10 were obtained by
banking the booster until a given heading was reached and then continuing
the glide at a constant value of L/D. The over-all recovery areas shown
in figure 6 were obtained by a superposition of the individual boundaries
shown in figure 10, and combining these with the results from the
downrange and looping glide maneuvers.

LOOPING GLIDE

The detalls of the looping glide maneuver are presented in
figures 11 and 12. During the analysis it was discovered that the
initiation of the loop was restricted to a range of altitudes between
60,000 and 70,000 feet for an L/D = 2.0 and that no loop could be com-
pleted at L/D less than 2.0 for the values of CDA/m investigated.
The loop maneuver could not be attempted during the ascent portion of
the trajectory because of the low density of the air at and above the
altitude for separation of the upper stages from the booster. The maxi-
munm heating rates and decelerations for the loop maneuver are presented
in figure 11.

Figure 12 presents the distance from the launch site as a function
of altitude for CpA/m = 0.50 £t2/slug and values of L/D ranging from
0 to 6.0. In the figure it can be seen that following the loop the
booster skipped for values of L/D equal to or greater than 4.0. It is
believed that these skips are not realistic and were a result of the
computer program requiring a step change in L/D.
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TABLE I.=- INITIAL RE-ENTRY CCONDITIONS

Downrange and Looping
banking glide glide

h, ft 318,450 60,450

v, ft/sec 6,600 81,600-2,900

7&} deg _33'0 -53 -O

s, mi 210 290

@Dependent upon the value of CDA/m.

TABLE II.- ROCKET VEHICLE CHARACTERISTICS

Stage 1 Stage 2 Stage 3

Gross welght, 1b 788,180 | 230,096 60,000
Fuel welght, 1b 697,680 | 217,770 26,000
Payload welght, 1b —— —_— 27,000
Empty weight, 1b 90,500 12,326 7,000
Weight flow, 1b/sec 5,81k4 1,190 T2
Burning time, sec 120 183 ——
Sea~level thrust, 1b | 1,500,000 -— -—-
Vacuum thrust, 1b 1,691,000 | 363,000 30,000
Sea-level Igp, sec 258 -— -—
Vacuum Igp, sec 291 305 417
Diameter, ft 21.k2 13.33 10.00
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Figure 5.- Effect of ballistic coefficient on the ability to successfully
complete the loop maneuver; L/D = 2.00.
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Figure 8.- Continued.
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Figure 9.- Banking glide maneuver details; CpA/m = 0.50 ft2/slug.
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Figure 10.- Ground area attainable with variation of bank angle;
1/D = 2.00, CpA/m = 0.50 ft%/slug.
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